Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.812
1.
Addict Biol ; 29(5): e13403, 2024 May.
Article En | MEDLINE | ID: mdl-38735880

Synthetic opioids such as fentanyl contribute to the vast majority of opioid-related overdose deaths, but fentanyl use remains broadly understudied. Like other substances with misuse potential, opioids cause lasting molecular adaptations to brain reward circuits, including neurons in the ventral tegmental area (VTA). The VTA contains numerous cell types that play diverse roles in opioid use and relapse; however, it is unknown how fentanyl experience alters the transcriptional landscape in specific subtypes. Here, we performed single nuclei RNA sequencing to study transcriptional programs in fentanyl-experienced mice. Male and female C57/BL6 mice self-administered intravenous fentanyl (1.5 µg/kg/infusion) or saline for 10 days. After 24 h abstinence, VTA nuclei were isolated and prepared for sequencing on the 10× platform. We identified different patterns of gene expression across cell types. In dopamine neurons, we found enrichment of genes involved in growth hormone signalling. In dopamine-glutamate-GABA combinatorial neurons, and some GABA neurons, we found enrichment of genes involved in Pi3k-Akt signalling. In glutamate neurons, we found enrichment of genes involved in cholinergic signalling. We identified transcriptional regulators for the differentially expressed genes in each neuron cluster, including downregulated transcriptional repressor Bcl6, and upregulated transcription factor Tcf4. We also compared the fentanyl-induced gene expression changes identified in mouse VTA with a published rat dataset in bulk VTA, and found overlap in genes related to GABAergic signalling and extracellular matrix interaction. Together, we provide a comprehensive picture of how fentanyl self-administration alters the transcriptional landscape of the mouse VTA that serves as the foundation for future mechanistic studies.


Analgesics, Opioid , Fentanyl , Mice, Inbred C57BL , Ventral Tegmental Area , Animals , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Mice , Fentanyl/pharmacology , Male , Female , Analgesics, Opioid/pharmacology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Self Administration , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Neurons/drug effects , Neurons/metabolism , Opioid-Related Disorders/genetics
2.
Ann Med ; 56(1): 2329259, 2024 Dec.
Article En | MEDLINE | ID: mdl-38738380

Opioids are the most prescribed drugs for the alleviation of pain. Both clinical and preclinical studies have reported strong evidence for sex-related divergence regarding opioid analgesia. There is an increasing amount of evidence indicating that gonadal hormones regulate the analgesic efficacy of opioids. This review presents an overview of the importance of gonadal steroids in modulating opioid analgesic responsiveness and focuses on elaborating what is currently known regarding the underlyingmechanism. We sought to identify the link between gonadal hormones and the effect of oipiod antinociception.


Gonadal hormones contribute to the sexual dimorphism of opioid antinociception.Generally, oestradiol is a negative modulator of opioid analgesia via both non-genomic and genomic effects.Testosterone facilitates opioid analgesia mainly through the transcriptional activities of androgen receptors.Under normal physiological conditions, progestin and oestrogen exist in parallel and have a combined effect. However, progestin alone could promote opioid analgesia by increasing the expression of opioid receptors.


Analgesics, Opioid , Gonadal Hormones , Pain , Analgesics, Opioid/pharmacology , Humans , Animals , Gonadal Hormones/metabolism , Male , Pain/drug therapy , Pain/metabolism , Female
3.
Pak J Pharm Sci ; 37(1): 53-63, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741400

The study focused on the neuroprotective role of Sorghum bicolor and vitamin C in the amelioration of oxidative stress and anxiety-like behavoiur induced by tramadol in male albino rats. The study design involved 7 groups and a control group with 5 male albino rats in each group. Tramadol (40 mg/kg) treatment was administered for 21 days. Tramadol 40mg/kg was administered in all groups. Pretreatment with varying doses of Sorghum bicolor and Vitamin C was done in three of the groups. Behavioral assessment of anxiety and locomotors actions of the groups were compared using Elevated Plus Maze (EPM) and Open Field Test (OFT). In conclusion, Sorghum bicolor and Vitamin C tramadol ameliorated oxidative stress and anxiety-like behaviour induced by tramadol. Pretreatment with Sorghum bicolor or vitamin C (100mg) can also reduced anxiogenic responses in male albino rats that are induced by chronic tramadol use.


Anxiety , Ascorbic Acid , Behavior, Animal , Oxidative Stress , Sorghum , Tramadol , Animals , Tramadol/pharmacology , Oxidative Stress/drug effects , Male , Ascorbic Acid/pharmacology , Anxiety/prevention & control , Anxiety/chemically induced , Anxiety/drug therapy , Rats , Behavior, Animal/drug effects , Antioxidants/pharmacology , Brain/drug effects , Brain/metabolism , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Rats, Wistar , Analgesics, Opioid/pharmacology , Anti-Anxiety Agents/pharmacology , Maze Learning/drug effects
4.
Molecules ; 29(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38611824

Pain affects one-third of the global population and is a significant public health issue. The use of opioid drugs, which are the strongest painkillers, is associated with several side effects, such as tolerance, addiction, overdose, and even death. An increasing demand for novel, safer analgesic agents is a driving force for exploring natural sources of bioactive peptides with antinociceptive activity. Since the G protein-coupled receptors (GPCRs) play a crucial role in pain modulation, the discovery of new peptide ligands for GPCRs is a significant challenge for novel drug development. The aim of this review is to present peptides of human and animal origin with antinociceptive potential and to show the possibilities of their modification, as well as the design of novel structures. The study presents the current knowledge on structure-activity relationship in the design of peptide-based biomimetic compounds, the modification strategies directed at increasing the antinociceptive activity, and improvement of metabolic stability and pharmacodynamic profile. The procedures employed in prolonged drug delivery of emerging compounds are also discussed. The work summarizes the conditions leading to the development of potential morphine replacements.


Analgesics , Peptides , Animals , Humans , Analgesics/pharmacology , Analgesics/therapeutic use , Peptides/pharmacology , Morphine , Pain , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use
5.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38612817

Diverse chemical and pharmacological strategies are currently being explored to minimize the unwanted side effects of currently used opioid analgesics while achieving effective pain relief. The use of multitarget ligands with activity at more than one receptor represents a promising therapeutic approach. We recently reported a bifunctional peptide-based hybrid LENART01 combining dermorphin and ranatensin pharmacophores, which displays activity to the mu-opioid receptor (MOR) and dopamine D2 receptor (D2R) in rat brains and spinal cords. In this study, we investigated the in vitro binding and functional activities to the human MOR and the in vivo pharmacology of LENART01 in mice after subcutaneous administration. In vitro binding assays showed LENART01 to bind and be selective to the human MOR over the other opioid receptor subtypes and delta, kappa and nociceptin receptors. In the [35S]GTPγS binding assay, LENART01 acted as a potent and full agonist to the human MOR. In mice, LENART01 produced dose-dependent antinociceptive effects in formalin-induced inflammatory pain, with increased potency than morphine. Antinociceptive effects were reversed by naloxone, indicating MOR activation in vivo. Behavioral studies also demonstrated LENART01's properties to induce less adverse effects without locomotor dysfunction and withdrawal syndrome compared to conventional opioid analgesics, such as morphine. LENART01 is the first peptide-based MOR-D2R ligand known to date and the first dual MOR-dopamine D2R ligand for which in vivo pharmacology is reported with antinociceptive efficacy and reduced opioid-related side effects. Our current findings may pave the way to new pain therapeutics with limited side effects in acute and chronic use.


Analgesics, Opioid , Oligopeptides , Pyrrolidonecarboxylic Acid/analogs & derivatives , Receptors, Opioid , Humans , Rats , Animals , Mice , Analgesics, Opioid/pharmacology , Ligands , Morphine , Opioid Peptides/pharmacology , Pain/drug therapy
6.
Biol Pharm Bull ; 47(4): 872-877, 2024.
Article En | MEDLINE | ID: mdl-38658360

The formalin test is one approach to studying acute pain in rodents. Similar to formalin, injection with glutamate and veratrine can also produce a nociceptive response. This study investigated whether opioid-related compounds could suppress glutamate- and veratrine-induced nociceptive responses in mice at the same dose. The administration of morphine (3 mg/kg), hydromorphone (0.4 mg/kg), or fentanyl (0.03 mg/kg) suppressed glutamate-induced nociceptive response, but not veratrine-induced nociceptive response at the same doses. However, high doses of morphine (10 mg/kg), hydromorphone (2 mg/kg), or fentanyl (0.1 mg/kg) produced a significant reduction in the veratrine-induced nociceptive response. These results indicate that high doses are required when using morphine, hydromorphone, or fentanyl for sodium channel-related neuropathic pain, such as ectopic activity. As a result, concerns have arisen about overdose and abuse if the dose of opioids is steadily increased to relieve pain. In contrast, trimebutine (100 mg/kg) and fentanyl analog isobutyrylfentanyl (iBF; 0.1 mg/kg) suppressed both glutamate- and veratrine-induced nociceptive response. Furthermore, nor-isobutyrylfentanyl (nor-iBF; 1 mg/kg), which is a metabolite of iBF, suppressed veratrine-induced nociceptive response. Besides, the optimal antinociceptive dose of iBF, unlike fentanyl, only slightly increased locomotor activity and did not slow gastrointestinal transit. Cancer pain is a complex condition driven by inflammatory, neuropathic, and cancer-specific mechanisms. Thus, iBF may have the potential to be a superior analgesic than fentanyl.


Analgesics, Opioid , Fentanyl , Animals , Fentanyl/pharmacology , Fentanyl/analogs & derivatives , Male , Mice , Analgesics, Opioid/pharmacology , Glutamic Acid/metabolism , Sodium Channel Blockers/pharmacology , Sodium Channel Blockers/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Pain Measurement/drug effects , Pain Measurement/methods , Morphine/pharmacology
7.
Genes Brain Behav ; 23(2): e12894, 2024 Apr.
Article En | MEDLINE | ID: mdl-38597363

Opioid use disorder (OUD) is an ongoing public health concern in the United States, and relatively little work has addressed how genetic background contributes to OUD. Understanding the genetic contributions to oxycodone-induced analgesia could provide insight into the early stages of OUD development. Here, we present findings from a behavioral phenotyping protocol using several inbred strains from the Hybrid Rat Diversity Panel. Our behavioral protocol included a modified "up-down" von Frey procedure to measure inherent strain differences in the sensitivity to a mechanical stimulus on the hindpaw. We also performed the tail immersion assay, which measures the latency to display tail withdrawal in response to a hot water bath. Initial withdrawal thresholds were taken in drug-naïve animals to record baseline thermal sensitivity across the strains. Oxycodone-induced analgesia was measured after administration of oxycodone over the course of 2 h. Both mechanical and thermal sensitivity are shaped by genetic factors and display moderate heritability (h2 = 0.23-0.40). All strains displayed oxycodone-induced analgesia that peaked at 15-30 min and returned to baseline by 2 h. There were significant differences between the strains in the magnitude and duration of their analgesic response to oxycodone, although the heritability estimates were quite modest (h2 = 0.10-0.15). These data demonstrate that genetic background confers differences in mechanical sensitivity, thermal sensitivity, and oxycodone-induced analgesia.


Analgesia , Opioid-Related Disorders , Rats , Animals , Oxycodone/pharmacology , Analgesics, Opioid/pharmacology
8.
FASEB J ; 38(8): e23603, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38648368

Recent evidence suggests that chronic exposure to opioid analgesics such as morphine disrupts the intestinal epithelial layer and causes intestinal dysbiosis. Depleting gut bacteria can preclude the development of tolerance to opioid-induced antinociception, suggesting an important role of the gut-brain axis in mediating opioid effects. The mechanism underlying opioid-induced dysbiosis, however, remains unclear. Host-produced antimicrobial peptides (AMPs) are critical for the integrity of the intestinal epithelial barrier as they prevent the pathogenesis of the enteric microbiota. Here, we report that chronic morphine or fentanyl exposure reduces the antimicrobial activity in the ileum, resulting in changes in the composition of bacteria. Fecal samples from morphine-treated mice had increased levels of Akkermansia muciniphila with a shift in the abundance ratio of Firmicutes and Bacteroidetes. Fecal microbial transplant (FMT) from morphine-naïve mice or oral supplementation with butyrate restored (a) the antimicrobial activity, (b) the expression of the antimicrobial peptide, Reg3γ, (c) prevented the increase in intestinal permeability and (d) prevented the development of antinociceptive tolerance in morphine-dependent mice. Improved epithelial barrier function with FMT or butyrate prevented the enrichment of the mucin-degrading A. muciniphila in morphine-dependent mice. These data implicate impairment of the antimicrobial activity of the intestinal epithelium as a mechanism by which opioids disrupt the microbiota-gut-brain axis.


Analgesics, Opioid , Dysbiosis , Fentanyl , Gastrointestinal Microbiome , Intestinal Mucosa , Mice, Inbred C57BL , Morphine , Animals , Morphine/pharmacology , Mice , Dysbiosis/chemically induced , Dysbiosis/microbiology , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Male , Fentanyl/pharmacology , Analgesics, Opioid/pharmacology , Brain-Gut Axis/drug effects , Fecal Microbiota Transplantation , Pancreatitis-Associated Proteins/metabolism , Akkermansia/drug effects , Antimicrobial Peptides/pharmacology , Bacteroidetes/drug effects
9.
J Med Chem ; 67(9): 7603-7619, 2024 May 09.
Article En | MEDLINE | ID: mdl-38687204

The design of bifunctional compounds is a promising approach toward the development of strong analgesics with reduced side effects. We here report the optimization of the previously published lead peptide KGFF09, which contains opioid receptor agonist and neuropeptide FF receptor antagonist pharmacophores and is shown to induce potent antinociception and reduced side effects. We evaluated the novel hybrid peptides for their in vitro activity at MOP, NPFFR1, and NPFFR2 and selected four of them (DP08/14/32/50) for assessment of their acute antinociceptive activity in mice. We further selected DP32 and DP50 and observed that their antinociceptive activity is mostly peripherally mediated; they produced no respiratory depression, no hyperalgesia, significantly less tolerance, and strongly attenuated withdrawal syndrome, as compared to morphine and the recently FDA-approved TRV130. Overall, these data suggest that MOP agonist/NPFF receptor antagonist hybrids might represent an interesting strategy to develop novel analgesics with reduced side effects.


Receptors, Neuropeptide , Receptors, Opioid, mu , Animals , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/metabolism , Mice , Receptors, Neuropeptide/agonists , Receptors, Neuropeptide/antagonists & inhibitors , Receptors, Neuropeptide/metabolism , Male , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/therapeutic use , Analgesics/chemical synthesis , Humans , Structure-Activity Relationship , Analgesics, Opioid/pharmacology , Analgesics, Opioid/chemistry
10.
Sci Adv ; 10(17): eadj9581, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669335

The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.


Analgesics, Opioid , Locus Coeruleus , Medulla Oblongata , Pain , Periaqueductal Gray , Locus Coeruleus/metabolism , Locus Coeruleus/drug effects , Periaqueductal Gray/metabolism , Periaqueductal Gray/drug effects , Animals , Medulla Oblongata/metabolism , Medulla Oblongata/drug effects , Pain/drug therapy , Pain/metabolism , Analgesics, Opioid/pharmacology , Male , Adrenergic Neurons/metabolism , Adrenergic Neurons/drug effects , Mice , Neural Pathways/drug effects
11.
Neuropharmacology ; 252: 109947, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38631564

A growing body of research indicates that ß-caryophyllene (BCP), a constituent present in a large number of plants, possesses significant therapeutic properties against CNS disorders, including alcohol and psychostimulant use disorders. However, it is unknown whether BCP has similar therapeutic potential for opioid use disorders. In this study, we found that systemic administration of BCP dose-dependently reduced heroin self-administration in rats under an FR2 schedule of reinforcement and partially blocked heroin-enhanced brain stimulation reward in DAT-cre mice, maintained by optical stimulation of midbrain dopamine neurons at high frequencies. Acute administration of BCP failed to block heroin conditioned place preference (CPP) in male mice, but attenuated heroin-induced CPP in females. Furthermore, repeated dosing with BCP for 5 days facilitated the extinction of CPP in female but not male mice. In the hot plate assay, pretreatment with the same doses of BCP failed to enhance or prolong opioid antinociception. Lastly, in a substitution test, BCP replacement for heroin failed to maintain intravenous BCP self-administration, suggesting that BCP itself has no reinforcing properties. These findings suggest that BCP may have certain therapeutic effects against opioid use disorders with fewer unwanted side-effects by itself.


Heroin , Polycyclic Sesquiterpenes , Self Administration , Animals , Male , Heroin/administration & dosage , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/administration & dosage , Female , Mice , Rats , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage , Sesquiterpenes/pharmacology , Sesquiterpenes/administration & dosage , Rats, Sprague-Dawley , Dose-Response Relationship, Drug , Conditioning, Operant/drug effects , Extinction, Psychological/drug effects , Reinforcement, Psychology , Reward , Mice, Transgenic , Nociception/drug effects , Mice, Inbred C57BL
12.
Clin Pharmacokinet ; 63(4): 397-422, 2024 Apr.
Article En | MEDLINE | ID: mdl-38485851

Naloxone is a World Health Organization (WHO)-listed essential medicine and is the first choice for treating the respiratory depression of opioids, also by lay-people witnessing an opioid overdose. Naloxone acts by competitive displacement of opioid agonists at the µ-opioid receptor (MOR). Its effect depends on pharmacological characteristics of the opioid agonist, such as dissociation rate from the MOR receptor and constitution of the victim. Aim of treatment is a balancing act between restoration of respiration (not consciousness) and avoidance of withdrawal, achieved by titration to response after initial doses of 0.4-2 mg. Naloxone is rapidly eliminated [half-life (t1/2) 60-120 min] due to high clearance. Metabolites are inactive. Major routes for administration are intravenous, intramuscular, and intranasal, the latter primarily for take-home naloxone. Nasal bioavailability is about 50%. Nasal uptake [mean time to maximum concentration (Tmax) 15-30 min] is likely slower than intramuscular, as reversal of respiration lag behind intramuscular naloxone in overdose victims. The intraindividual, interindividual and between-study variability in pharmacokinetics in volunteers are large. Variability in the target population is unknown. The duration of action of 1 mg intravenous (IV) is 2 h, possibly longer by intramuscular and intranasal administration. Initial parenteral doses of 0.4-0.8 mg are usually sufficient to restore breathing after heroin overdose. Fentanyl overdoses likely require higher doses of naloxone. Controlled clinical trials are feasible in opioid overdose but are absent in cohorts with synthetic opioids. Modeling studies provide valuable insight in pharmacotherapy but cannot replace clinical trials. Laypeople should always have access to at least two dose kits for their interim intervention.


Naloxone , Narcotic Antagonists , Humans , Administration, Intranasal , Analgesics, Opioid/pharmacokinetics , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Drug Overdose/drug therapy , Half-Life , Naloxone/pharmacokinetics , Naloxone/administration & dosage , Naloxone/pharmacology , Narcotic Antagonists/pharmacokinetics , Narcotic Antagonists/pharmacology , Narcotic Antagonists/administration & dosage
13.
Drug Discov Today ; 29(5): 103950, 2024 May.
Article En | MEDLINE | ID: mdl-38514040

Drugs targeting the µ-opioid receptor (MOR) remain the most efficacious analgesics for the treatment of pain, but activation of MOR with current opioid analgesics also produces harmful side effects, notably physical dependence, addiction, and respiratory depression. Opioid peptides have been accepted as promising candidates for the development of safer and more efficacious analgesics. To develop peptide-based opioid analgesics, strategies such as modification of endogenous opioid peptides, development of multifunctional opioid peptides, G protein-biased opioid peptides, and peripherally restricted opioid peptides have been reported. This review seeks to provide an overview of the opioid peptides that produce potent antinociception with much reduced side effects in animal models and highlight the potential advantages of peptides as safer opioid analgesics.


Analgesics, Opioid , Drug Discovery , Opioid Peptides , Analgesics, Opioid/adverse effects , Analgesics, Opioid/pharmacology , Animals , Humans , Ligands , Drug Discovery/methods , Pain/drug therapy , Receptors, Opioid, mu/metabolism , Peptides/pharmacology , Peptides/therapeutic use
14.
Eur J Pharmacol ; 969: 176428, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38432572

BACKGROUND: Morphine tolerance has been a challenging medical issue. Neuroinflammation is considered as a critical mechanism for the development of morphine tolerance. Bromodomain-containing protein 4 (BRD4), a key regulator in cell damage and inflammation, participates in the development of chronic pain. However, whether BRD4 is involved in morphine tolerance and the underlying mechanisms remain unknown. METHODS: The morphine-tolerant rat model was established by intrathecal administration of morphine twice daily for 7 days. Behavior test was assessed by a tail-flick latency test. The roles of BRD4, pyroptosis, microglia polarization and related signaling pathways in morphine tolerance were elucidated by Western blot, real-time quantitative polymerase chain reaction, and immunofluorescence. RESULTS: Repeated morphine administration upregulated BRD4 level, induced pyroptosis, and promoted microglia M1-polarization in spinal cord, accompanied by the release of proinflammatory cytokines, such as TNF-α and IL-1ß. JQ-1, a BRD4 antagonist, alleviated the development of morphine tolerance, diminished pyroptosis and induced the switch of microglia from M1 to M2 phenotype. Mechanistically, stimulator of interferon gene (STING)- interferon regulatory factor 3 (IRF3) pathway was activated and the protective effect of JQ-1 against morphine tolerance was at least partially mediated by inhibition of STING-IRF3 pathway. CONCLUSION: This study demonstrated for the first time that spinal BRD4 contributes to pyroptosis and switch of microglia polarization via STING-IRF3 signaling pathway during the development of morphine tolerance, which extend the understanding of the neuroinflammation mechanism of morphine tolerance and provide an alternative strategy for the precaution against of this medical condition.


Microglia , Morphine , Rats , Animals , Nuclear Proteins/metabolism , Analgesics, Opioid/pharmacology , Neuroinflammatory Diseases , Interferon Regulatory Factor-3/metabolism , Pyroptosis
15.
Brain Res Bull ; 209: 110917, 2024 Apr.
Article En | MEDLINE | ID: mdl-38428507

PURPOSE: Fentanyl, a fully synthetic opioid, is widely used for severe pain management and has a huge abuse potential for its psychostimulant effects. Unlike other opioids, the neurotoxic effects of chronic fentanyl administration are still unclear. In particular, little is known about its effect on the cerebral cortex. The current study aims to test the chronic toxicity of fentanyl in the mice model. METHODS: Adult male Balb/c mice were chronically treated with low (0.05 mg/kg, i.p) and high (0.1 mg/kg, i.p) doses of fentanyl for 5 consecutive weeks, and various neurotoxic parameters, including apoptosis, oxidative stress, and neuroinflammatory response were assessed in the cortex. Potential histological as well as neurochemical changes were also evaluated. RESULTS: The results of this study show that chronic fentanyl administration induced intense levels of apoptosis, oxidative stress, and neuroinflammation in the cerebral cortex. These findings were found to be correlated with histopathological characteristics of neural degeneration and white matter injury. Moreover, fentanyl administration was found to reduce the expression of both NMDA receptor subunits and dopamine receptors and elevate the level of epidermal growth factor (EGF). CONCLUSION: Fentanyl administration induced neurotoxic effects in the mouse cerebral cortex that could be primarily mediated by the evoked oxidative-inflammatory response. The altered expression of NMDA receptors, dopamine receptors, and EGF suggests the pernicious effects of fentanyl addiction that may end in the development of toxic psychosis.


Epidermal Growth Factor , Fentanyl , Mice , Male , Animals , Fentanyl/pharmacology , Epidermal Growth Factor/therapeutic use , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use , Pain/drug therapy , Cerebral Cortex
16.
J Neural Transm (Vienna) ; 131(5): 491-494, 2024 05.
Article En | MEDLINE | ID: mdl-38436758

Synthetic and semi-synthetic opioids are prescribed for the management of severe pain conditions, but their long-term use is often leading to physical dependence and addiction disorders. Understanding the complex neurobiology of the opioid system in preclinical models will be essential for the development of safe and efficacious analgesics. With rising numbers of synthetic opioid users and overdose cases, a better understanding of the neuroanatomical and cellular pathways associated with physical dependence and addiction is expected to guide treatment approaches for opioid use disorders. In this commentary, we highlight the importance of advanced genetic mouse models for studying the regional effects of opioid receptors, and we discuss the need of genetic mouse models for the investigation of the regional, circuit and cell compartment-specific role of intracellular mediators of opioid actions.


Analgesics, Opioid , Disease Models, Animal , Opioid-Related Disorders , Receptors, Opioid , Animals , Mice , Analgesics, Opioid/pharmacology , Opioid-Related Disorders/genetics , Receptors, Opioid/genetics , Receptors, Opioid/metabolism , Humans
18.
Top Companion Anim Med ; 59: 100861, 2024.
Article En | MEDLINE | ID: mdl-38508490

Pre-emptive analgesia consists of administering drugs such as opioids and nonsteroid anti-inflammatory drugs. This study aims to evaluate the intraoperative antinociceptive effects of diclofenac administered alone in premedication or combined with morphine along with its potential influence on recovery of dogs undergoing ovariohysterectomy. A total of 34 dogs (ASA I or II) admitted for ovariohysterectomy were randomly allocated into three groups according to the drugs given in premedication: Diclofenac (D) (n = 11), Morphine (M) (n = 13) and Diclofenac-Morphine (DM) (n = 10) groups. Induction and maintenance of anesthesia were standardized in all dogs. To assess intraoperative nociception, the heart rate (HR) and mean arterial pressure (MAP) were recorded during the surgery and at predefined time points: St (steady-state), Cut (cutaneous incision), P1 (first ovarian manipulation), P2 (second ovarian manipulation) and Cerv (cervical manipulation). The dynamic variation of HR (ΔHR) and MAP (ΔMAP) over 2 min was calculated at each time point. After extubation, early quality of recovery was assessed. Compared to St, a significant increase in HR and MAP at P1, P2 and Cerv was shown in all groups. MAP in the M group was lower at St than in the other groups. The dynamic variation of HR (ΔHR) and MAP (ΔMAP) was significantly less important at P2 and Cerv compared to P1 only in the DM group. Also, a better quality of recovery was shown in the D group compared to the M and DM groups. Diclofenac may be considered a suitable premedication drug and a part of a multimodal anesthetic approach in dogs.


Analgesics, Opioid , Diclofenac , Female , Dogs , Animals , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use , Hysterectomy/veterinary , Morphine/pharmacology , Premedication/veterinary , Ovariectomy/veterinary
19.
Life Sci ; 345: 122580, 2024 May 15.
Article En | MEDLINE | ID: mdl-38514005

Substance use disorder (SUD) affects over 48 million Americans aged 12 and over. Thus, identifying novel chemicals contributing to SUD will be critical for developing efficient prevention and mitigation strategies. Considering the complexity of the actions and effects of these substances on human behavior, a high-throughput platform using a living organism is ideal. We developed a quick and easy screening assay using Caenorhabditis elegans. C. elegans prefers high-quality food (Escherichia coli HB101) over low-quality food (Bacillus megaterium), with a food preference index of approximately 0.2, defined as the difference in the number of worms at E. coli HB101 and B. megaterium over the total worm number. The food preference index was significantly increased by loperamide, a µ-opioid receptor (MOPR) agonist, and decreased by naloxone, a MOPR antagonist. These changes depended on npr-17, a C. elegans homolog of opioid receptors. In addition, the food preference index was significantly increased by arachidonyl-2'-chloroethylamide, a cannabinoid 1 receptor (CB1R) agonist, and decreased by rimonabant, a CB1R inverse agonist. These changes depended on npr-19, a homolog of CB1R. These results suggest that the conserved opioid and endocannabinoid systems modulate the food preference behaviors of C. elegans. Finally, the humanoid C. elegans strains where npr-17 was replaced with human MOPR and where npr-19 was replaced with human CB1R phenocopied the changes in food preference by the drug treatment. Together, the current results show that this method can be used to rapidly screen the potential effectors of MOPR and CB1R to yield results highly translatable to humans.


Caenorhabditis elegans , Substance-Related Disorders , Animals , Humans , Food Preferences , Escherichia coli , Drug Inverse Agonism , Substance-Related Disorders/drug therapy , Analgesics, Opioid/pharmacology
20.
J Pharmacol Sci ; 154(4): 264-273, 2024 Apr.
Article En | MEDLINE | ID: mdl-38485344

The monosynaptic connection from the lateral parabrachial nucleus (LPB) to the central amygdala (CeA) serves as a fundamental pathway for transmitting nociceptive signals to the brain. The LPB receives nociceptive information from the dorsal horn and spinal trigeminal nucleus and sends it to the "nociceptive" CeA, which modulates pain-associated emotions and nociceptive sensitivity. To elucidate the role of densely expressed mu-opioid receptors (MORs) within this pathway, we investigated the effects of exogenously applied opioids on LPB-CeA synaptic transmission, employing optogenetics in mice expressing channelrhodopsin-2 in LPB neurons with calcitonin gene-related peptide (CGRP). A MOR agonist ([D-Ala2,N-Me-Phe4,Glycinol5]-enkephalin, DAMGO) significantly reduced the amplitude of light-evoked excitatory postsynaptic currents (leEPSCs), in a manner negatively correlated with an increase in the paired-pulse ratio. An antagonist of MORs significantly attenuated these effects. Notably, this antagonist significantly increased leEPSC amplitude when applied alone, an effect further amplified in mice subjected to lipopolysaccharide injection 2 h before brain isolation, yet not observed at the 24-h mark. We conclude that opioids could shut off the ascending nociceptive signal at the LPB-CeA synapse through presynaptic mechanisms. Moreover, this gating process might be modulated by endogenous opioids, and the innate immune system influences this modulation.


Calcitonin Gene-Related Peptide , Central Amygdaloid Nucleus , Mice , Animals , Calcitonin Gene-Related Peptide/metabolism , Central Amygdaloid Nucleus/metabolism , Synaptic Transmission , Neurons , Synapses/physiology , Receptors, Opioid, mu/metabolism , Analgesics, Opioid/pharmacology
...